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CLASSICAL AND NONLINEAR BUCKLING ANALYSES
OF SPHERICAL SANDWICH SHELLS
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Abstract-—The buckling and initial postbuckling behavior of clamped shallow spherical sandwich shells with
dissimilar face sheets under a uniform pressure is studied. The numerical results show that the buckling and
initial post-buckling behavior of clamped shallow spherical sandwich shells with dissimilar face sheets is similar
to that of the corresponding homogeneous shell.

The classical buckling analysis for spherical sandwich shells under a uniform pressure is also presented. The
results indicate that it is possible to obtain the buckling curves of spherical sandwich caps from those of the
homogeneous cap using a magnification factor which is obtained via the classical buckling analysis, for large
values of the sandwich shell parameter.

INTRODUCTION

THE purpose of this investigation is twofold. Firstly, the buckling and initial postbuckling
behavior of clamped shallow spherical sandwich shells with dissimilar face sheets is
studied. The effects of the core thickness and core shear modulus on the imperfection
sensitivity of the sandwich cap are investigated. The analysis of the behavior of the shell
immediately after bifurcation buckling is based on Koiter’s initial postbuckling theory [1].
It is essentially a perturbation technique which relies on the principle of stationary potential
energy. This technique is transcribed by Fitch [2] into a form suitable for application to the
shallow spherical homogeneous shell.

Asymmetric buckling behavior of clamped shallow spherical homogeneous shells
under a uniform pressure was studied by Huang [3]. The initial postbuckling analysis for
this problem has been provided by Fitch and Budiansky [4]. Akkas and Bauld [5] presented
a sequence of boundary value problems that are relevant to the analysis of the buckling
and initial postbuckling behavior of shallow spherical sandwich shells with dissimilar
face shects under certain axisymmetrical loads. The numerical results presented in Ref.
[5] for the clamped shallow spherical sandwich shell with similar face sheets subjected to a
uniform pressure show that the buckling and initial post-buckling behavior of the sandwich
capissimilar tothat oftheclassicalhomogeneouscap[3, 4]. Theaxisymmetric snap-through
buckling behavior of the spherical sandwich cap with some different material parameters is
studied by Akkas [6]. The results of Ref. [5, 6] are limited to the sandwich shells with face
sheets made from the same materials and whose thicknesses are equal. For various reasons,
such as the optimization of sandwich structures subject to thermal as well as mechanical
loads, it is often necessary to have facings of different thicknesses and/or materials. It is
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the purpose of this investigation to study the buckling and initial postbuckling behavior of
clamped shallow spherical sandwich shells with face sheets of different thicknesses and/or
materials subjected to a uniform pressure.

The second purpose of the investigation is to determine the relationship between the
buckling behaviors of spherical sandwich and homogeneous shells, which were shown to be
strikingly similar in Ref. [5, 6], at least for the specific sandwich shell parameter considered.
To achieve this purpose, the classical (linear) buckling behavior of a complete sandwich
sphere will be studied. In this respect, the present work is an application of Hutchinson’s
work [7] to the sandwich sphere.

SANDWICH SHELL WITH DISSIMILAR FACE SHEETS

Theory

The development of the set of nonlinear differential equations that is suitable for the
analysis of the buckling and initial postbuckling behavior of thin shallow spherical sand-
wich shells under axisymmetrical loads has been presented by Akkas and Bauld [5].
The behavior of thin clamped shallow spherical sandwich shells under pressures that are
distributed uniformly over the entire reference surface of the shell undergoing moderately
large deflections can be described by the nondimensional equations:
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The nondimensional quantities appearing in equations (1)-(10) are related to the corres-
ponding physical quantities through the relations
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The variables t,,t,, ¢, a and H are defined in Fig. 1. The transverse shearing modulus
associated with the core material is denoted by G, while E, and E, signify the moduli of
elasticity of the upper and lower face sheets, respectively. The Poisson’s ratio for the face
sheets is denoted by v (Poisson’s ratios for the two face sheets are assumed to be equal)
and gq is the intensity of the uniform pressure. The radial and circumferential coordinates
are denoted by r and ¢, respectively. The quantities w, f, a, § are the nondimensional
transverse deflection, Airy stress function and shear angles, respectively; W, F, &, B are
the corresponding conventional physical quantities as described in Ref. [5]. The primes
and dots represent, respectively, derivatives with respect to x and ¢ ;and V?is the Laplacian
operator in polar coordinates.

FIG. 1. Geometry of a clamped shallow spherical sandwich shell.
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Since the derivation of the boundary value problems governing the axisymmetric
buckling, bifurcation buckling and initial postbuckling behavior of the shell has already
been presented in Ref. {5], it will not be repeated here. However, for a better understanding
of the numerical results that will be presented later, it is necessary to describe the initial
postbuckling coefficient b and the initial postbuckling relative stiffness parameter 9.

The theory of initial postbuckling behavior, originated by Koiter [1], leads, via an
asymptotically valid calculation, to the determination of the initial slope of the bifurcation
path. This result can then be used to predict whether buckling of the structure is sensitive
to small initial geometric imperfections. The significance of the initial postbuckling coef-
ficient b 1s connected with the notions of imperfection-sensitive structures. It has been
shown in Ref. [2, 4] that structures containing initial geometric imperfections are imperfec-
tion-sensitive, in the sense that the buckling load for the imperfect structure should be
expected to be less than that for the corresponding perfect structure, whenever the load for
the perfect structure initially decreases at the bifurcation point, Fig. 2(a). A structure is
said to be imperfection-insensitive, in the sense that load-deflection curve for the imperfect
structure exhibits a much milder growth of displacement as the load reaches and exceeds
the classical buckling load of the corresponding perfect structure, whenever the load for
the perfect structure increases subsequent to asymmetrical buckling, Fig. 2(b). Accordingly,
a structure 1s said to be imperfection-sensitive or imperfection-insensitive according to
whether the initial postpuckling coefficient b is negative or positive, respectively.

The initial postbuckling relative stiffness parameter 9, which was defined by Fitch and
Budiansky [4], gives the slope of the initial postbuckling path. The parameter 3 can vary
between +1 and —1. and it is positive for increasing load, and negative for decreasing
load, Fig. 3. Values of & between —1 and — 3} correspond to a backward sloping post-
buckling load-deflection curve with decreasing load.

Numerical results

The numerical procedures employed in this study have been described in detail by
Akkas and Bauld [5].
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FIG. 2. Interpretation of initial postbuckling coefficient b.



Classical and nonlinear buckling analyses of spherical sandwich shells

N ¥

———— 90

-

Load
A\
———— — —

8--05

— Axisymmetric
——— Post buckling

Deflection
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Figure 4 shows the effect of the face sheet thickness parameter on the buckling behavior
of the clamped shallow spherical sandwich shell under a uniform pressure. For this problem,
the geometric shell parameter A = 15 and the sandwich shell parameter A = 0-8. The core
thickness is taken to be equal to the upper face sheet thickness, and the upper and lower
face sheets have the same elastic moduli. The nondimensional face sheet thickness para-
meter is allowed to vary between ¢ = 0-5 and 2-0.

The upper plot in Fig. 4 shows that the bifurcation buckling always precedes the
axisymmetric snap-through buckling, at least for the range of u considered. The critical
wave numbern = 4for0-50 < u < 1-65anditisn = Sfor 1-65 < y < 2:00. The maximum
nondimensional critical load occurs at 4 = 0-8. Although for ¢ > 0-8 the nondimensional
critical load decreases, it should be noted that the physical critical load increases since it is
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F1G. 4. Buckling and initial postbuckling behavior vs. face sheet thickness parameter.
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proportional to (u* + u* + 1+ 1)/2. The middle and lower portions of Fig. 4 show that the
sandwich cap, for the range of u considered, is always imperfection sensitive, and the
initial postbuckling load-deflection curve has a backward slope; that is, a decrease in
deflection accompanies the decrease in load.

The effect of the face sheet material parameter ¢ on the buckling and initial postbuckling
behavior of the sandwich cap with pertinent parameters A = 15,A = 08,5 = landu = 1
is shown in Fig. 5. For the range of ¢ considered (0-5 < ¢ < 2.0), the bifurcation buckling
with n = 4 always precedes the axisymmetric snap-through buckling and the cap is im-
perfection-sensitive. The initial postbuckling load-deflection curve has a backward slope.

Figure 6 shows the buckling and initial postbuckling behavior of a clamped shallow
spherical sandwich shell with dissimilar face sheets under a uniform pressure distributed
over its entire reference surface. The pertinent parameters are A = 0-8,6 = 1, y = 2 and
e =05

A=15, A=0-8, 8:I, p=|
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F1G. 5. Buckling and initial postbuckling behavior vs. face sheet material parameter.

The qualitative description of the buckling and initial postbuckling behavior for the
sandwich cap with dissimilar face sheets under a uniform pressure is precisely the same
as for the homogeneous cap under the same load [3, 4] and also for the sandwich cap with
similar face sheets [5]. For 5-5 < A < 9-3 the buckling behavior is of the axisymmetrical
type. For 4 > 9-3 the buckling behavior is of the asymmetrical type with b < 0 which
signifies that the asymmetrical buckling process is characterized by a decrease in load
carrying capacity for this range of 1. Since the relative stiffness parameter 3 < —0-5 for
A > 9-3 it follows that a decrease in deflection accompanies the decrease in load. It was
observed, for 4 < 5-5, that snap-through buckling did not occur.
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FI1G. 6. Buckling and initial postbuckling behavior of clamped shallow spherical sandwich shells with
dissimilar face sheets.

CLASSICAL BUCKLING ANALYSIS

The classical buckling analysis of a sandwich sphere under a normal pressure has been
presented by Yao [8], who concluded that the problem can be treated by using shallow-
shell equations because of the fact that the characteristic buckle wavelengths are small
compared to the shell radius. Hutchinson, in his analysis of imperfection sensitivity of
monocoque spheres [7], employs nonlinear shallow-shell equations. In the present work
nonlinear shallow-shell equations will be employed for the buckling analysis of a sand-
wich sphere under a pressure that is distributed uniformly over the entire reference surface
of the sphere.

The equations of nonlinear shallow sandwich shell theory in Cartesian coordinates are
derived by Fulton [9] and they are given below :
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where R denotes the radius of the reference surface of the sandwich shell and
h=c+3(t, +t,).

The Laplacian operator referred to the Cartesian coordinates is denoted by V2. All the
other quantities have already been defined.

Prior to buckling the spherical sandwich shell is in a uniform membrane state of stress.
To determine the classical buckling pressure q,, take

F= —i(x*+y*)qR+F,, (16)
W= gW,+ W, (17)
&= ag+o,, (18)
B=Po+pi, (19)

where W, is a constant and o, i, correspond to prebuckling behavior and are zero. Also
prior to buckling

Fl, W1»0(1,ﬂ1 are zero.

The linear buckling equations are obtained by substituting F, W, & and f into equations
(12-15) and then linearizing with respect to F; and W, . One obtains

Eti+E,t 1 Gh?
( 11;(1 2 2))V4IVI AV2F1_+_ qRVZW + OH x+ﬁ1 v VZ ) 0’ (20)
—V

VAF, + 292w, =0, (2n

(Eqty +Esty)
R
and equations (14), (15) on (W, «,, f8,).
Periodic solutions to these homogeneous eigenvalue equations are sought in the form
of products of sinusoidal functions such as

W, = cos mx cos ny, (22)
F, = Acos mx cos ny, (23)
o, = Bsinmx cos ny, (24)
B, = Ccos mx sin ny. (25)

The eigenvalue associated with this choice, in nondimensional form, is

B (1+8,u3)k+(1+£[1)+ 36 +3(1 + 1%k
4 k (L+ep)  248,/(1+ep) k]’
UE A2 J(1 +ep)

(26)
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where

k = (m* +n?)Re,//[3(1 —v?)]
(27)

3 B 2E, t\?
P = 4/90, %—mE :

Here, g, is the classical buckling pressure of a monocoque full sphere with thickness ¢,
and modulus of elasticity E,. The minimum buckling pressure p, for the sandwich sphere
is found by minimizing p as given by equation (26) with respect to k. This minimization
process leads to the following polynomial:

k* +ask® +ak* +ak+a, =0, (28)
ay = {AZ[(1+eu) (1 +ep)]12} (120 pe), (29)
ay = a3/4— 41 +ep)/(1+ep®) + A2+ H1 + p)]*/(485% e), (30)
ay = — 41 +epay/(1+ep’), (31
a, = a,az/4: (32)

The polynomial (28) has only one real positive root, and the classical buckling pressure p,
corresponds to this root.

It is interesting to note that by letting 4 — 0 or ¢ —» 0, one obtains p, = 1. In other
words, if one allows the inner face sheet thickness or elastic modulus to go to zero, then
the sandwich sphere reduces to a homogeneous sphere as expected.

By letting & — 0, for ¢ = 1, one obtains p, = (1+u)*; in other words, as § — 0 the
sandwich sphere reduces to the homogeneous sphere with thickness (t, +1¢,). To see if
this theoretical result could be substantiated by a numerical analysis, it was considered
to be of interest to study the nature of the buckling and initial postbuckling behavior of
the clamped shallow spherical sandwich shell when the core thickness is allowed to go to
zero. The pertinent parameters for the shell chosenare A = 15, A =08, u=1lande =1
Via the classical buckling analysis it is conjectured that for this shell, as & — 0, the buckling
behavior should be of the asymmetric type with n = 6 and p, = 3-10. Figure 7 shows the
effect of the core thickness parameter d on the buckling and initial postbuckling behavior
of the sandwich shell. The conjectured critical load is shown by the little circle on the
abscissa of the upper plot in Fig. 7. The core thickness parameter J is allowed to vary
between 10 and 0-1. For ¢ > 3-40 the buckling behavior is of the axisymmetric type.
For 0-35 < § < 3-40 asymmetric buckling precedes axisymmetrical cap-snapping and the
wave numbers associated with the buckling modes increase in succession beginning with
n=2up ton=>5 as ¢ decreases. For 0-1 < § < 0-35 the axisymmetric cap-snapping
again precedes the bifurcation buckling. The trend of the buckling curve in Fig. 7 for
0-35 < 0 < 101s, in a way, substantiating the conjecture via the classical buckling analysis.
The reason for the unexpected apparent buckling behavior for 0-1 < é < 0-35is unknown;
however, it may be suggested that this is due to a numerical instability for these small values
of 4.

The middle portion of Fig. 7 gives the initial post-buckling coefficient b as a function of 6.
The cap is imperfection sensitive within the range of 6 in which the bifurcation buckling
precedes the axisymmetric snap-through buckling. It has been suggested in the literature
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FiG. 7. Buckling and initial postbuckling behavior vs. core thickness parameter.

that as the core thickness of a sandwich shell is increased, its susceptibility to small im-
perfections is reduced. The results plotted in the middle portion of Fig. 7 are in agreement
with this suggestion.

Finally, the lower portion of Fig. 7 shows that, in the range of asymmetric buckling,
the initial postbuckling load—deflection curve of the sandwich cap always has a backward
slope.

Another interesting observation about equations (26) and (28) is the fact that as the
shear modulus of the core material is allowed to go to zero, one obtains, for ¢ = yu = 1,
p. = 2. That is, as G — 0 the sandwich sphere reduces to two homogeneous spheres one
inside the other. Since, in the derivation of the equation, it is assumed that the uniform
pressure acts over the reference surface of the sphere, it is obvious that the critical pressure
for the sandwich sphere is to be twice that of the monocoque sphere as G — 0 for a given
core thickness.

On the other hand, if G — oo the critical load becomes, for ¢ = u = 1,

p. = 2/(362 +65+4). (33)

The effect of the sandwich shell parameter A = (G/E,)(a/H)?> on the buckling and
initial postbuckling behavior of a clamped shallow spherical sandwich shell subjected to a
uniform pressure is shown in Fig. 8. The pertinent parametersare A = 15,8 = ¢ = y = 1.
The figure is self-explanatory and the trend of the buckling curve of the upper plot sub-
stantiates the results of the classical analysis. Moreover, the middle portion of Fig. 8
shows that one can reduce the degree of imperfection sensitivity of the shell by increasing
the shear modulus of the core material.

It is noted from the upper plot of Fig. 8 that for A greater than roughly 0-5, increased
core shear (i.e. larger values of A) does not essentially increase the buckling pressure. For
A greater than 0-5, at least for the shell under consideration, the assumption of a core with
G = o is approximately valid. This observation will be utilized in the sequel to relate the
geometric parameters of the homogeneous and sandwich shells.
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FiG. 8. Buckling and initial postbuckling behavior vs. sandwich shell parameter.

Equations (26) and (28) were solved numerically for two sets of parameters, namely for
A=08,e=1,u=106=10and for A=08,¢= 1, u= 1,6 = 1. The nondimensional
buckling pressure is given as a function of A4 in Fig. 9. It should be emphasized that, although
here A was chosen to be 0-8 for comparison purposes, one necd not to specify A, since p,
can be plotted as a function of AA% In Fig. 9, p, = 1 is the classical buckling pressure of the
homogeneous sphere with thickness ¢, and elastic modulus E;. The classical buckling
pressures of the sandwich shells for a given § increase very rapidly as A increases, and for the
larger values of 4 the classical buckling curves are very nearly horizontal lines. In other

Pc

F1G. 9. Classical buckling pressure of sandwich spheres.
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words. for these large values of 4. the sandwich shell is essentially behaving like a sandwich
shell with a core with infinite shear stiffness.

In Fig. 10 the results of some recent works on the axisymmetric buckling behavior of
clamped shallow spherical sandwich shells under a uniform pressure are presented. The
asymmetrical buckling curves are not shown: however, the conclusions on the axisym-
metrical buckling curves are valid also for the asymmetrical buckling curves.

Curve I in Fig. 10 is the axisymmetrical buckling curve of the spherical homogeneous
cap with thickness 2¢, . It is obtained from the axisymmetrical buckling curve of the classical
homogeneous cap (thickness r,) through the following relations:

(A = 2AA)e. (34)
(P = 4pc- (35)

where the subscript C corresponds to the classical homogeneous cap.
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FiG. 10. Comparison of axisymmetric buckling curves of spherical homogeneous and sandwich caps.

The curves I-IV are strikingly similar. In Fig. 10, the dashed lines that connect some
characteristic points of the curves are, for all practical purposes, parallel to each other. A
study of the numerical data from which the curves in Fig. 10 are constructed indicates that
the buckling curves of spherical sandwich shells under a uniform pressure can be obtained
almost exactly from that of the corresponding homogeneous shell, via an almost linear
transformation, at least for the sandwich shell parameter considered here. Indeed, these
data are given in the Appendix for reference purposes for the workers in the field. For all
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practical purposes, the ratio (magnification factor) between the buckling loads of the
sandwich cap and the homogeneous cap for corresponding geometric shell parameters can
be determined via the classical buckling analysis of the sandwich spheres. These ratios, in
fact, can be obtained from the values shown in circles in Fig. 10.

It was mentioned previously that for A greater than roughly 0-5, the assumption of a
core with G = oo is approximately valid. For a sandwich shell with a core with infinite
shear stiffness, the following relations hold:

W g LW
q = — —r6¢'

or’

For this case, the nondimensional equations (1)+{4) governing the behavior of spherical
sandwich shells can be reduced to exactly the form for the homogeneous shell given by
Huang [3], but with different nondimensionalization factors. The nondimensional para-
meters in this case are, fore = 1and u = 1,

(36)

1/2
1 =203 —vz)]““(y{) (362 +65+4) /4, (37
4
5= [3(1 —v2)]1/2E%%[352+65+4]-1/2. (38)

Using these new parameters in sandwich shell equations, one can, indeed, collapse the
curves of Fig. 10 to the single curve for the homogeneous cap.

It should be emphasized that the conclusions of the preceding paragraph are valid only
for large values of the sandwich shell parameter A, roughly for A > 0-5. To see how small
core stiffness affects the behavior of spherical sandwich caps, we studied the buckling and
initial postbuckling behavior of spherical sandwich caps under a uniform pressure with
pertinent parameters A = 0-2,0 = 3,¢ = 1and u = 1. The axisymmetric buckling behavior
of this shell has already been presented in Ref. [6]. The results are shown in Fig. 11. The
buckling behavior of this sandwich shell is different from that of the homogeneous shell,
the difference being more pronounced for smaller values of 1. However, the general con-
clusions that can be obtained from the curves of Fig. 11 are still similar to those of the
homogeneous cap. In other words, the spherical sandwich cap under a uniform pressure
with A = 0.2 is imperfection-sensitive, the initial postbuckling load-deflection curve has a
backward slope and for A > 12-5 the bifurcation buckling always precedes the axisym-
metric snap-through buckling,

CONCLUSIONS

The buckling and initial postbuckling behavior of clamped shaliow spherical sandwich
shells with dissimilar face sheet under a uniform pressure is similar to that of the classical
homogeneous cap, at least for the sandwich shell parameter A considered here. The sus-
ceptibility of a spherical sandwich cap to small imperfections can be reduced by increasing
either the core thickness or the shear modulus of the core material. On the basis of the
numerical results presented so far, it is concluded that, for large values of A, the axisym-
metric snap-through buckling curves, hence the asymmetric buckling curves, of spherical
sandwich caps can be obtained from those of the classical homogeneous cap. The ratio
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FiG. 11. Buckling and initial postbuckling behavior of clamped shallow spherical sandwich shells with
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between the buckling loads of spherical sandwich and corresponding homogeneous
shells can be obtained via the classical (linear) buckling analysis of sandwich spheres. For
smaller values of A, there is no apparent almost-linear relationship between the buckling
curves of sandwich and homogeneous caps, although the general conclusions are similar.
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APPENDIX

Axisymmetric buckling loads for clamped shallow spherical homogeneous and sand-
wich shells under a uniform pressure are given in this Appendix. The notation N B implies
no snap-through buckling.

TaBLE |

Homogeneous A=08,6=1 A=08,6=1 A=085=10

thickness 1, u=2¢=1% u=1le=1 u=1le=1
A p. 2 P i P 4 P
3.25 NB 5 NB 55 NB 13.5 NB
3301 0-648 55 342 6 396 14 2354
3.5t 0-614 6 325 7 3-83 15 22:61
4t 0-578 65 319 75 386 16 21:52
4.5 0-580 7 321 8 394 17 2130
5% 0-629 8 3-42 9 4.26 18 21:36
5.5% 0-762 9 4.05 10 514 19 21-66
575 0958 95 524 105 6-36 20 2218
6% 0995 10 551 11 6-63 21 2298
65 1.026 11 5-80 115 6-82 22 24.20
7% 1-068 12 604 13 726 23 26-12
81 1:130 13 626 15 777 24 30-90
825 1-136
8.5 1-046 14 648 155 790 24.5 3500
9t 0-935 14-5 5-89 16 727 25 35-88
26 36-90
95 0-846 15 545 16-5 677 30 39-56
10t 0-825 16 494 17 642 35 4234
10-5 0-802 17 472 17-5 6-17 355 4260
36 4288
11} 0-835 18 4-66 18 599 38 3694
121 0-965 19 475 18:5 587 40 33.54
42 3172
20 509 19 579 44 30-80
19-5 575 45 30-60
20 575 46 30-55
20-5 578 48 30-86
21 585 50 31-88

+ Reference [10].
1 Reference [3].
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AbcTpakT—WccnenyeTcs Bbly4HBaHME W HAYANBHOE MOBEAEHHE NOC/IE BbIIYYHBAHHUS NOMOTUX 3aAeMaRHbIX
chepuyeckrx CIOUCTBIX 060104€EK, C pAIHBIMU TOPLEBLIMH CIIOAMH, MO BIUAHUEM OAHOMEPHOIO AABNEHUA .
YucneHuble pe3ynbTaTbl yKa3biBatOT, YTO BbIMYYMBAHWE M HAYANbHOE MOBEACHWUE NOC/E BbITYYHBAHUA
3afeslaHHOft noJioroit Chepuyeckoil CAOMCTOH 0DOMOYKH, € Pa3HbiMU TODPLEBbIMM COAMH, ABARETCH
noAOOHBIM MOBEAEHHUIO COOTBETCTBYIOLIEH OOHOPOAHON 0B0I0UKH.

JlaeTtcsa, Takke, KJIACCMYECKMIl aHAM3 BBIMYYMBAHMA AnA ChEpUYECKUX CNoucThIX OBomouek, noa
B/IMAHUEM OJHOPOAHOTO AaBneHHA. PelyabTarThl yKalblBalOT HA TO, YTO ABJISETCA BO3MOXHbLIM MOJYYUTH
KPHUBbBIC BbIMTYYMBAHUA CHEPHYECKMX CIOUCTHIX KPBILIOK W3 DPE3YybTATOB AN OAHOPOAHBIX KPBILIOK,
UCNOMb3ys yBennueHue GaKTopa, KOTOPHIH MONYHAETCA U3 KIACCHMUYECKOTO aHasinia BbINYYMBaAHWUA, aNs
6ONbLINX 3HAMEHUI NApaMeTpa CNOUCTON 0BONOHKH.



